Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Res Sq ; 2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2320460

ABSTRACT

Background The mechanisms used by SARS-CoV-2 to induce major adverse cardiac events (MACE) are unknown. Thus, we aimed to determine if SARS-CoV-2 can infect the heart to kill cardiomyocytes and induce MACE in patients with severe COVID-19. Methods This observational prospective cohort study includes experiments with hamsters and human samples from patients with severe COVID-19. Cytokines and serum biomarkers were analyzed in human serum. Cardiac transcriptome analyses were performed in hamsters' hearts. Results From a cohort of 70 patients, MACE was documented in 26% (18/70). Those who developed MACE had higher Log copies/mL of SARS-CoV-2, troponin-I, and pro-BNP in serum. Also, the elevation of IP-10 and a major decrease in levels of IL-17ɑ, IL-6, and IL-1rɑ were observed. No differences were found in the ability of serum antibodies to neutralize viral spike proteins in pseudoviruses from variants of concern. In hamster models, we found a stark increase in viral titers in the hearts 4 days post-infection. The cardiac transcriptome evaluation resulted in the differential expression of ~ 9% of the total transcripts. Analysis of transcriptional changes of the effectors of necroptosis (mixed lineage kinase domain-like, MLKL) and pyroptosis (gasdermin D) showed necroptosis, but not pyroptosis, to be elevated. Active form of MLKL (phosphorylated MLKL, pMLKL) was elevated in hamster hearts and, most importantly, in the serum of MACE patients. Conclusion SARS-CoV-2 can reach the heart during severe COVID-19 and induce necroptosis in the heart of patients with MACE. Thus, pMLKL could be used as a biomarker of cardiac damage and a therapeutic target. Trial registration: Not applicable.

2.
Crit Care ; 27(1): 155, 2023 04 20.
Article in English | MEDLINE | ID: covidwho-2305739

ABSTRACT

BACKGROUND: The mechanisms used by SARS-CoV-2 to induce major adverse cardiac events (MACE) are unknown. Thus, we aimed to determine if SARS-CoV-2 can induce necrotic cell death to promote MACE in patients with severe COVID-19. METHODS: This observational prospective cohort study includes experiments with hamsters and human samples from patients with severe COVID-19. Cytokines and serum biomarkers were analysed in human serum. Cardiac transcriptome analyses were performed in hamsters' hearts. RESULTS: From a cohort of 70 patients, MACE was documented in 26% (18/70). Those who developed MACE had higher Log copies/mL of SARS-CoV-2, troponin-I, and pro-BNP in serum. Also, the elevation of IP-10 and a major decrease in levels of IL-17ɑ, IL-6, and IL-1rɑ were observed. No differences were found in the ability of serum antibodies to neutralise viral spike proteins in pseudoviruses from variants of concern. In hamster models, we found a stark increase in viral titters in the hearts 4 days post-infection. The cardiac transcriptome evaluation resulted in the differential expression of ~ 9% of the total transcripts. Analysis of transcriptional changes in the effectors of necroptosis (mixed lineage kinase domain-like, MLKL) and pyroptosis (gasdermin D) showed necroptosis, but not pyroptosis, to be elevated. An active form of MLKL (phosphorylated MLKL, pMLKL) was elevated in hamster hearts and, most importantly, in the serum of MACE patients. CONCLUSION: SARS-CoV-2 identification in the systemic circulation is associated with MACE and necroptosis activity. The increased pMLKL and Troponin-I indicated the occurrence of necroptosis in the heart and suggested necroptosis effectors could serve as biomarkers and/or therapeutic targets. Trial registration Not applicable.


Subject(s)
COVID-19 , Cardiovascular Diseases , Humans , Protein Kinases , Necroptosis , Prospective Studies , Troponin I , SARS-CoV-2 , Biomarkers/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases
3.
Cell Rep ; 39(13): 111020, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1885675

ABSTRACT

While there have been extensive analyses characterizing cellular and humoral responses across the severity spectrum in COVID-19, outcome predictors within severe COVID-19 remain less comprehensively elucidated. Furthermore, properties of antibodies (Abs) directed against viral antigens beyond spike and their associations with disease outcomes remain poorly defined. We perform deep molecular profiling of Abs directed against a wide range of antigenic specificities in severe COVID-19 patients. The profiles included canonical (spike [S], receptor-binding domain [RBD], and nucleocapsid [N]) and non-canonical (orf3a, orf8, nsp3, nsp13, and membrane [M]) antigenic specificities. Notably, multivariate Ab profiles directed against canonical or non-canonical antigens are equally discriminative of survival in severe COVID-19. Intriguingly, pre-pandemic healthy controls have cross-reactive Abs directed against nsp13, a protein conserved across coronaviruses. Consistent with these findings, a model built on Ab profiles for endemic coronavirus antigens also predicts COVID-19 outcome. Our results suggest the importance of studying Abs targeting non-canonical severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and endemic coronavirus antigens in COVID-19.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
4.
Cell Rep Med ; 2(12): 100476, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1631200

ABSTRACT

Despite extensive analyses, there remains an urgent need to delineate immune cell states that contribute to mortality in people critically ill with COVID-19. Here, we present high-dimensional profiling of blood and respiratory samples from people with severe COVID-19 to examine the association between cell-linked molecular features and mortality outcomes. Peripheral transcriptional profiles by single-cell RNA sequencing (RNA-seq)-based deconvolution of immune states are associated with COVID-19 mortality. Further, persistently high levels of an interferon signaling module in monocytes over time lead to subsequent concerted upregulation of inflammatory cytokines. SARS-CoV-2-infected myeloid cells in the lower respiratory tract upregulate CXCL10, leading to a higher risk of death. Our analysis suggests a pivotal role for viral-infected myeloid cells and protracted interferon signaling in severe COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Lung/immunology , SARS-CoV-2/pathogenicity , Aged , COVID-19/blood , COVID-19/virology , Critical Illness , Cytokines/blood , Gene Regulatory Networks , Humans , Inflammation , Lung/virology , Models, Theoretical , Monocytes/immunology , Myeloid Cells/immunology , Reproducibility of Results , Viral Load
5.
Front Immunol ; 12: 754127, 2021.
Article in English | MEDLINE | ID: covidwho-1518487

ABSTRACT

COVID-19 presentations range from mild to moderate through severe disease but also manifest with persistent illness or viral recrudescence. We hypothesized that the spectrum of COVID-19 disease manifestations was a consequence of SARS-CoV-2-mediated delay in the pathogen-associated molecular pattern (PAMP) response, including dampened type I interferon signaling, thereby shifting the balance of the immune response to be dominated by damage-associated molecular pattern (DAMP) signaling. To test the hypothesis, we constructed a parsimonious mechanistic mathematical model. After calibration of the model for initial viral load and then by varying a few key parameters, we show that the core model generates four distinct viral load, immune response and associated disease trajectories termed "patient archetypes", whose temporal dynamics are reflected in clinical data from hospitalized COVID-19 patients. The model also accounts for responses to corticosteroid therapy and predicts that vaccine-induced neutralizing antibodies and cellular memory will be protective, including from severe COVID-19 disease. This generalizable modeling framework could be used to analyze protective and pathogenic immune responses to diverse viral infections.


Subject(s)
Alarmins/immunology , COVID-19 Drug Treatment , COVID-19 , Models, Biological , SARS-CoV-2 , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Anti-Inflammatory Agents/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines , Humans , Middle Aged , Reproducibility of Results , Viral Load
6.
J Virol ; 95(20): e0101021, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440800

ABSTRACT

The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is poorly understood due to a lack of an animal model that recapitulates severe human disease. Here, we report a Syrian hamster model that develops progressive lethal pulmonary disease that closely mimics severe coronavirus disease 2019 (COVID-19). We evaluated host responses using a multi-omic, multiorgan approach to define proteome, phosphoproteome, and transcriptome changes. These data revealed both type I and type II interferon-stimulated gene and protein expression along with a progressive increase in chemokines, monocytes, and neutrophil-associated molecules throughout the course of infection that peaked in the later time points correlating with a rapidly developing diffuse alveolar destruction and pneumonia that persisted in the absence of active viral infection. Extrapulmonary proteome and phosphoproteome remodeling was detected in the heart and kidneys following viral infection. Together, our results provide a kinetic overview of multiorgan host responses to severe SARS-CoV-2 infection in vivo. IMPORTANCE The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has created an urgent need to understand the pathogenesis of this infection. These efforts have been impaired by the lack of animal models that recapitulate severe coronavirus disease 2019 (COVID-19). Here, we report a hamster model that develops severe COVID-19-like disease following infection with human isolates of SARS-CoV-2. To better understand pathogenesis, we evaluated changes in gene transcription and protein expression over the course of infection to provide an integrated multiorgan kinetic analysis of the host response to infection. These data reveal a dynamic innate immune response to infection and corresponding immune pathologies consistent with severe human disease. Altogether, this model will be useful for understanding the pathogenesis of severe COVID-19 and for testing interventions.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Immunity, Innate , Proteome , Transcriptome , Animals , COVID-19/genetics , COVID-19/virology , Disease Models, Animal , Gene Ontology , Heart/virology , Kidney/metabolism , Kidney/virology , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Male , Mesocricetus , Myocardium/metabolism , Phosphoproteins/metabolism , Proteomics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Severity of Illness Index , Viral Load
7.
The FASEB Journal ; 35(S1), 2021.
Article in English | Wiley | ID: covidwho-1233880

ABSTRACT

COVID-19 has caused a lot of misinformation with regards to the value and importance of science in dealing with the pandemic. Additionally, the pandemic-induced lockdown has adversely affected higher education. However, the post-pandemic recovery process is going to be a great opportunity to create reforms in higher education and increase engagement of policymakers and lay audiences on science-related issues. In order to bridge the gap between researchers and policymakers, the Journal of Science Policy and Governance (JSPG) in collaboration with UC Irvine's Graduate Professional Success in STEM (GPS-STEM) offered the virtual Science Policy & Advocacy for STEM Scientists Certificate Program. The program equips early career researchers (ECRs) with fundamental skills in science policy and advocacy, including effective communication for engaging policymakers on a multitude of issues. To impart some of this knowledge to ECR members at the conference who are interested in these careers, we plan to organize a short session describing outcomes of the program and ways in which ECRs can translate scientific knowledge into societal impact. Following the session, we will create a handout with science policy and advocacy resources for distribution to participants.

8.
J Family Med Prim Care ; 9(10): 5261-5266, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-937601

ABSTRACT

INTRODUCTION: The Quality of life is a broad-ranging concept affected in a complex way by the person's physical health, psychological state, level of independence, social relationships, personal beliefs, and their relationship to salient features of their environment. The ongoing COVID-19 pandemic has resulted in many quarantine and isolation measures and lockdown of the nation for the foreseeable future. Although these initiatives are necessary to prevent the spread of coronavirus they may be causing adverse mental health effects. Medical students are backbone and future of the health system and the general public always looks up to them as a role model of society. With this background, this study aims to assess the quality of life among medical students during the lockdown period amid the COVID-19 pandemic. MATERIAL AND METHODS: A self-administered, pretested, questionnaire based on World Health Organization Quality of Life: Brief Version (WHOQOL-BREF) standard quality of life was used. For internal reliability and structural validity, Cronbach's alpha coefficient and confirmatory factor analysis (CFA) were calculated, respectively. t-test, one way ANOVA, and Pearson Chi-square test were used. RESULTS: The mean scores of domains of the present study were highest for the environmental domain (72.10 ± 13.0) followed by physical (67.23 ± 13.74), social (57.13 ± 20.1), and lowest for the psychological domain (52.10 ± 17.45). The level of internal consistency was found to be 0.883, which is considered as sufficiently reliable. One-third of the medical students were spending >6 h on-screen, and merely 15.6% were doing physical activity >1 h. CONCLUSION: It was found that during this time of crisis medical students were weaker in the psychological domain of Quality of Life among all the four domains. Physical activity and screen time was an important factor to the QOL of students, and it is likely that students would benefit from increased physical activity and minimizing screen time.

9.
J Family Med Prim Care ; 9(7): 3778-3780, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-890549
SELECTION OF CITATIONS
SEARCH DETAIL